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higher order diagrams and that of an isolated quasi-
particle. The ek which enters in | k = (Ak

2+ek
2)1/2 is 

closely related to the normal single-particle energy 
computed by Brueckner et al.21 (fn*/tn^0.7)J but the 
intermediate-state energies [which enter both in the 
jT-matrix series and explicitly in the integral for Gb, 
Eq. (5.2)] are more closely related to the reference 
spectrum of Bethe, Brandow, and Petschek. The refer
ence spectrum energies are characterized by a larger 
effective mass (m*^0.85) and an additive constant. 

(b) It would be useful to repeat our calculations with 
the best phenomenological potentials (with explicit use 
of one-pion exchange), thus including the effects of 
relative angular-momentum states beyond 1=0. In that 
case it would also be interesting to determine the 

I. INTRODUCTION 

THE prediction of an energy gap in the spectrum 
of a superconductor by the theory of Bardeen, 

Cooper, and Schrieffer1 (BCS) and observations on the 
spectra of even-even nuclei have led to the speculation 
that the same concepts might apply to nuclei2 and 
nuclear matter.3'4 An essential feature of a supercon
ducting system is the attractive interaction of time-
reversed pairs near the Fermi surface. The present paper 
uses this feature to study the energy gap in infinite 
nuclear matter. 

Solutions of the basic integral equation are obtained 
which qualitatively confirm the results of Emery and 
Sessler,5 who used a Gammel-Thaler potential acting in 
s waves only. In addition, we show the effects on the 
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anisotropy of the gap with respect to some arbitrary 
direction. 

The results of our calculation lead us to believe that 
the energy gap in infinite nuclear matter is very small, 
if not absent. This suggests that the gap may well be a 
finite-size effect, and work is in progress to determine 
whether this is indeed the case. 
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gap of different forms of the potential between nucleons, 
define criteria for the existence of an energy gap (see 
also Ref. 4), and compare approximate solutions with 
exact solutions of the integral equations. 

II. ENERGY GAP FOR A SINGLE 
SEPARABLE INTERACTION 

The basic equation to be solved is the BCS integral 
equation1 (for notation, see Ref. 6; however, we use 
here Ak for the quantity Ak°) 

Ak,Gk,k>° 

k' (c^+A^2)1 '2 

The energy gap is interpreted as 2Aki?=2A. ek> is a 
renormalized single-particle energy measured with 
respect to the Fermi energy and Gk,k'° is the free-
particle-interaction matrix element 

G k t k , °=<k , -k |7 |k / , -k / >. 

Throughout this paper only the s-wave part of this 
matrix is used, and €k is represented by the effective-

6 E. M. Henley and L. Wilets, preceding paper, Phys. Rev. 
133, B1118 (1964). 
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The Bardeen-Cooper-Schrieffer (BCS) theory is employed to study the energy gap in nuclear matter with 
various internucleonic potentials which fit singlet low-energy scattering data and the s-wave phase shift at 
310 MeV. The interactions are expressed as the sum of two terms, each of which is separable, thus admitting 
exact solutions of the energy-gap equation. The dependence of the energy gap on the form and parameters 
of the interaction, as well as on the nuclear density and effective mass, is investigated. For normal nuclear 
density, the gap is found to be small compared with that observed in the heaviest nuclei. 
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FIG. 1. Energy gap 

for the simple Yama-
guchi potential. 

m*/m = l. 

kF (F-«) 

mass approximation 

ek=(h2/2fn*)(k2-~kP
2). 

The usual transition to the continuum is made by 
2 —» 1/ (2w)sJ*dzk, unit volume normalization, Gk,k'° 
—> G°(k,kf) (s wave only) which gives 

- 2 T T r» W)&(k#)k'*dk' 
A( f t) = / _ 

(2ir)«J0 [W+A2(&') ]1 / 2 

The difficulty in solving Eq. (1) is posed in large 
part by the nonlinear occurrence of &(kf). However, if 
G°(k)k

/) is a finite sum of separable terms 

(the factor h2/m is introduced for convenience), then 
the solution reduces to a system of nonlinear trans
cendental equations. (This is analogous to the situation 
with a linear integral equation where the reduction is 
to a system of linear algebraic equations.) A simple 
example of such a separable potential is furnished by 
the Yamaguchi7 potential: 

\h2 1 
G%kfi)= (2TT)3 

m (k2+P2)(k/2+$2) 

XW 
= -—(2*- )«w(*M* ' ) . 

m 
The BCS equation becomes 

2wh2 r A(k,)w(k,)k,2dk/ 

A(k) = —Xw(ife) I 
m Jo [e 2+A 2 (£ ' ) ] 

7 y. Yamaguchi, Phys. Rev. 95? 1628 (1954). 

1/2 

which is satisfied by A(k) = Aw(k). The constant A 
is determined by solving the equation 

2*#* 
1= X 

/ . 

k'Wik'W 

m J0 [ ? + 4 ¥ ( i ' ) ] 1/2 
(2) 

Figure 1 shows the solution of Eq. (2) as a function of 
the Fermi momentum for the potential parameters 
given at the end of Table I. 

Although Eq. (2) can be solved numerically to any 
desired degree of accuracy, a good approximation for 
small A is as follows: 

2irh2 

1 « XI 
m J o 

^-hok'2w2(k')dkf 

F V*uHy)dW 

+ kF
2W2(kF) / 

J kF—kc 

which is valid when 

{ [ ( ^ 2 / w * ) ^ ( ^ - ^ ) ] 2 + A 2 } 1 / 2 J 
(3a) 

w*A 

h2kF 

-«:kc<£p,kF. (3b) 

Further, the last integral in (3a) is, to the same approx
imation, 

2m^w2{kp)kF 2h2kpkc 

In . 

Let 
m*A 

(1) I(fi) = ' 
2wh2\r rkF-k*k'2w2(k')dk' 

then 
m u 

/»oo 

J kF+k, 

2h2kFkc r 
A= exp 

4:wm%FW2{hF)\ 

kf2w2(k')dk'~l 

, m J' 
( 1 - / 0 8 ) ) ] . (4) 

1(0) is evaluated in Appendix A. The cutoff kc is chosen 
so that the solutions to the exact expression match on 
smoothly to those of the approximation, subject to the 
restriction (3b) above. 

Finally, it is interesting to note that a finite energy 
gap always exists for X positive because the potential is 
then everywhere attractive. 

III. THE NUCLEAR ENERGY GAP 

A. Specification of Potentials 

To investigate the energy gap in nuclear matter, it is 
necessary to consider more "realistic" potentials which 
are able to reproduce relevant nucleon-nucleon scatter
ing data. Since the most important short-range effects 
occur for relative singlet s states, we consider effective 
interactions for this state only. Because the form of the 
interaction is not completely determined by the scatter
ing phase shifts at a finite number of points, it is of 
interest to examine the effect of the shape on the energy 
gap. For this reason two families of potentials—two 
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distinct members of each—are compared. Three of these 
fit the same three parameters deduced from singlet 
scattering data: the scattering length, effective range, 
and the s-wave phase shift at 310 MeV. The fourth 
potential is the one suggested by Puff.8 The point at 
310 MeV is chosen because the phase shifts are best 
known there from the work of Stapp, Ypsilantis, and 
Metropolis9 together with the work of MacGregor, 
Moravcsik, and Stapp.10 

The forces we discuss here are all sums of two 
separable terms^and they fall into two classes. In the 
first class both terms have the simple Yamaguchi form 
(s wave only): 

7(r,r') = — Xi X2— 
2mL r rf r 7 J 

These will be referred to as "back-to-back" Yama-
guchi's. The second class of potentials (called Puff 
type) obtain their repulsion from a hard shell and their 
attraction from a simple Yamaguchi form 

V{r„ 
irh2

 t r 
/) = lim ] 

2m X«^°°L 

8(r—rc)d(r' — rc) e 
Xc X-

r rr r 

•fir g-Pr'-x 

7—\> 
where rc is the shell radius. Their Fourier transforms, 

G°(k,k') = le-k-tV(r/)e-k'-I'dSrdV, 

are, respectively, 

*2 r Xi h> r 
- ( 2 T ) » 
m L {v+w) (k'*+w) {w+m (k'*+w) • ] • 

and 
h 
— ( 2 T T ) 3 l i m f x 

sin&rc $ink'rc 

V (k2+(32)(k,2+p2). 

The three scattering parameters described earlier 
completely determine the constants of the Puff-type 

TABLE 1. Potential parameters. 

ft(F" 
a 3. 
b 6. 

(Puff-type II) 
d 

(Puff-type I) 

I 
l) 

Back-to-back Yamaguchi 
Xi(F~3) 
7.65507 

123.075 

lfo(F-i) 
1.76599 
1.62047 

II. Puff type 
/3(F-i) 

1.60152 

2.004 

III. Simple 
0CF-1) 
1.254 

X(F"3) 

0.886015 

3.64 

Yamaguchi 
X(F~3) 
0.18725 

X2(F~3) 
1.73131 
0.952992 

reCP) 

0.256986 

0.45 

8 R. D. Puff, Ann. Phys. (N. Y.) 13, 319 (1961). 
9 H. P. Stapp, T. J. Ypsilantis, and N. Metropolis, Phys. Rev. 

105, 302 (1957). 
10 M. H. MacGregor, M. J. Moravcsik, and H, P. Stapp, 

Ann. Rev. NucL Sci, 10, 291 (1960). 

FIG. 2. Phase shifts for the sets of potential parameters given in 
Table I. The + ' s represent the best experimental points (see 
Ref. 8). Curves a, b, and c all pass through the experimental 
point at k= 1.933 F"1 which corresponds to 310 MeV. 

interaction. Since the back-to-back Yamaguchi's have 
four arbitrary constants, they form an infinite family 
that can fit the chosen scattering data. We shall compare 
two particular choices from this family with the Puff 
potential8 and Puff-type interaction. The constants 
used are specified in Table I, and their determination is 
given in Appendix B. In Fig. 2, the values of the phase 
shift have been plotted as a function of the relative mo
mentum for all the potentials in Table I except the simple 
Yamaguchi. The experimental points are the best set 
specified by Stapp et al.10 The Puff8 potential (curve d of 
Fig. 2) gives a greater negative phase shift at 310 MeV 
than do the others. However, it contains a currently 
acceptable value of the hard-shell radius and so is 
included. 

B. Solutions of the Gap Equation 

The form of all the phenomenological nucleon-nucleon 
potentials of Sec. I l l is 

h2 

G0(k}k
,)^-(2Tyi\1w1(k)w1(kO-\2W2(k)w2(k

f)2> (5) 

which allows the following solution of the integral 
equation (1): 

A(k) = Aw1(k)+Bw2(k), 

where A a n d B a re i ndependen t of ky 

f 
Jo 

A,/ 
m Jo 

2vh2 r VAik'Jwiik'W 

m Jo [l2(&')+A2(£')]1/2 

2T¥ 
B = -

k'2A(k')w2(k')dk' 

l?(k')+A2(k')Jl2 

(6) 

(V) 

(8) 

When A(&) from expression (6) is substituted in Eqs. (7) 
and (8), the following two equations are obtained: 

and 
Xi (47 i+57 , ) -^=0 > 

\i{Bh-Ah)-B=Q, 

(9a) 

(9b) 
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where the integrals h, 1\, and 1% are functions of both A and B: 

h 
2%¥ 

/ . 

k2dk 

m h ZZ2+(Aw1(k)+Bw2(k)¥']1'2 
-W\{k)w2{k) 

w2
2(k) 

For the Puff-type potential Xi—>oo, and Eqs. (9) Yamaguchi potentials, Y and X are given by 
reduce to 

Ah+BI2=0, 
and 

/ i=X2(/2
2+/1 /3) . 

F = / ( f t ) / ( f t ) - / 6
2 + / ( ^ 2 ) - / ( f t ) - l , 

X=^[2/6wi(^)^2^F)(XiX2)1/2-X1/(i32)wi2(^) 
- X27 (ft) w2

2 (kF)+X1W12 (kF) - \2w2
2 (kF)~], 

For each interaction, these sets of exact nonlinear 
equations were solved numerically by an iterative 
scheme on an IBM-709 digital computer. For small A, 
the approximation made in Sec. II can be employed. 
The answers can be expressed as follows: 

2h2kFkc 
A = e-(m/47rm*)(F/X)< 

tn* 
(10) 

For the Puff-type potentials, Y and X are given by 

r = / 4 ( / 0 3 ) - l ) - / 5
2 , 

X—kF\2[_2I$wi (kF)w2 (kF)—I (fi)wi2 (kF) 
—IiW2

2(kF)+w1
2(kF)2, 

with 

lirh2 / rkF~kc r" \ 

h=—x{ + ) 
m \J 0 J kF+kc ' 

2wh2 / rkF~kc r* \ 

/ . -—x i / +/ ) 
m \J 0 J kF+kc ' 

Jfrvfifydk 

ik2Wi(k)w2(k)dk 

where Wi(k) = k~1 sinkrc, w2(k)=(k2-\-$2)~l, and m*A/ 
h2kF<ZCkc<KI3, kFj rc~

l. Explicit formulas for I\ and 
I& are given in Appendix A. For the back-to-back 

FIG. 3. Energy-gap curves for the potentials given 
in Table I. tn*/tn — l. 

with 

2TT#2 / rkF~kc r \ 
h=—(XiX.W / + / )• 

m \ J 0 J kp+ke ' 

ik2Wi(k)w2(k)dk 

where w1(k)=(k2+$1
2)~\ w2(k) = (JP+ft*)-1, and w*A/ 

fi2kF<£kc<£fii, ft, kF. The explicit formula for 76 is 
given in Appendix A. 

From the small A approximation [Eq. (10)], it can 
be seen that the exact condition for the limit of a 
vanishing energy gap is X=Q. This is to be contrasted 
with the purely attractive case where a nonzero solution 
always exists (if X>0). The condition X = 0 thus 
furnishes a criterion for the existence of the energy gap 
in terms of the parameters of the problem. 

IV. RESULTS AND CONCLUSIONS 

Figure 3 shows the energy gap as a function of the 
Fermi momentum £~ (density)1/3] for all of the 

io r 

2A 
IMeV) 

FIG. 4. An extension of the curves given in Fig. 3. m*/m = X. 
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2A 
(MeV) 

0.8 
m?m 

FIG. 5. Energy-gap curves for fo-=1.4 F_1. 

potentials investigated. Note that although three of 
the potentials (a, b, and c) fit the same three pieces of 
scattering data, the curves are not identical. This is 
partially caused by the fact that the interactions differ 
at and close to the Fermi surface, where the chief 
contribution to the integrals arises. However, in the 
region of low nuclear density (i.e., kp<1.3 F - 1 ) , the 
dependence on the form and parameters of the potential 
is not great. 

Figure 4 is a continuation of Fig. 3 for higher nuclear 
densities to the region where the gap is extremely 
small. Because of the nonanalytic exponential depend-

nft Vm 

r 
Solution 

L. , *r , i 
y / \ 

V 
1 

" 
k F ( F - ' ) 

FIG. 6. Curves showing where solutions cease to exist for 
the potentials given in Table I. 

ence of the gap parameters on kF, slight changes in the 
interaction are here greatly magnified in the numerical 
value of A. 

The dependence of the energy gap on the effective 
mass m* is shown in Fig. 5 a t "normal" nuclear density 
(ro=1.09F, where the nuclear radius is rQ A1/3), corre
sponding to UF— 1.4 F - 1 . Because the gap is quite small, 
there is a strong dependence on the potential param
eters. For the suggested values of11 m^/m^O.7, the gap 
is equal to, or less than, 5 keV. 

Figure 6 shows the line of demarcation between the 
regions for which solutions do and do not exist. In 
general, the Puff-type potentials, being more repulsive 
at higher momenta, give a zero gap for lower Fermi 
momenta than do the corresponding back-to-back 
Yamaguchi's. 

We can summarize our findings as follows: (1) The 
gap at normal nuclear densities and m*«0.7m is very 
small. For the most optimistic of these potentials it is 
about 5 keV. This is to be compared with ^ 1 MeV, 
observed in the heaviest nuclei. (2) Our results agree 
roughly with those obtained by Emery and Sessler.5 

(3) The gap is extremely sensitive to small changes in 
the form and parameters of the interaction and to the 
effective mass in the range of very small gaps (A<1 
keV) but less so when the gap is sizeable (A>0.1 MeV). 

APPENDIX A: EVALUATION OF INTEGRALS 

In Sec. II , the integral 1(13) was introduced. Its form is 

4:7Wl* 
703) = Xw(kF) 

m 

'kFw(kF) 4:kF
2 — kc

2 1 kF — kc 1 kF+kc 

In 
2 (kF-kcy+p 2 (kF+kcy+l32 

1 / 2kFp 
+—(\-kF

2w(kF))[<ir-2 tan-1-
2/3 \ p2-kF

2+k2 

where w(k)=(tk
2+(P)~1. For the hard-shell potential, the integrals (Sec. I l l ) are defined as follows: 

m*Ar 4kF
2-k„2 

h= In 
mkFL kc

2 

)]• 

-cos2rc*F{2Ci[2rc*J-^^ 

+s in2^ F {7r-Si [2r c (2^-^ c ) ] -Si [2r c (2^+^ c ) ]} 
11 K. A. Brueckner, J. L. Gammel, and J. T. Kubis, Phys. Rev. 118, 1438 (1960). 
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/ 6 = = 2TT {2Ifirlrc(kF-ko)]+2IfirLre(kF+'ke)]+^M 
m 

-2 Ci[rcft,]} + c o s ^ . 

Si(#) and Ci(#) are, respectively, the sine and cosine integrals, and 

rx i sintdt 
Jo t2+(prcy 

47rm*(XiX2)
1/2r^ 2kF(3x 2kF(32 

-(w2(kF)P2—wi(kF)Pi)+wi(kF)Pi tan - 1 w2(kF)p2 tan"1-
m(/5x

2—/52
2) L2 Pi2-kF*+ke* (32

2-kF
2+kc 

W2(kFW-W1(kFW 4:kF
2-kc

2 

2kF 

APPENDIX B: DETERMINATION OF POTENTIAL PARAMETERS 

4kF*-kc*-l 
In . 

kc
2 J 

The potential parameters given in Table I were fit to the scattering data by means of the scattering matrix 
(s wave only) 

S(k,k';ti) = G°(k,k')+-
m rG°(k,k")S(k",k';Q)d*k" 

: / VJ 2-k"2 

In terms of S, the scattering amplitude is 

2TT2M eib sin5 
/ (*) = Km S(k,k; k2+ie) = , 

c~>° h2 k 
and we obtain 

l h2 

k cotd=ik-\—=ik . 
/ 2ir2tnS(k,k'yk

2+ie) 
For low energies 

k cot5« (l/a)+^rek
2, 

where a and re are the scattering length and effective range, respectively. 
The form of G°(k,k') is given by Eq. (5). Then 

S(k,k; k2+ie)={h2/m)l\1w1
2{k)-\2w2^ 

where 
\2W2(*)/22(Xi/n—l)+Xi/i2(Wl(fe)—X2W2(ft)/l2) 

h(k) = , 
XlX2 / l22-(X2 /22+l)(Xl/l l- l) 

and 
XlWl(fe)/ll(X2/22+l)--X2i"l2(W2(fe)+XiWi(*)/i2) 

g(k)= . 
XlX 2 / l 2

2-(X 2 /22+l)(Xl/ l l - l ) 

The integrals / # are given by 

J —OC 

For the specific interactions chosen, the results are as follows: With Puff-type potentials 

1 r €-"* 
k cot5=-

w1(^)L2e-^'-cos/ferc-[w1(fe)/2][(l/ir2X2W22(*))-|3+^V/3] 

l+(rc/3a)-(re/rc) 
= (l W'+( ¥ (1-e"")*! 

\ Br J \3 B*rt*/Ll+(o/re) J l+(*7«)* \ Br J \3 BW/Ll+(a/rc) 
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and 
$* 2 r e~2(irc 

= 1 + — 2r* r «- l -
2 r e~zpre i 
- 2 r * r « - l — , 
\rL 1+rJaJ 

ir2X2 &rcL 1+rc/i 

where the limit Xi—><*> has been taken, Wi(k) — k~l sinkrc and W2(k)=(k2+P2)~1. The back-to-back, Yamaguchi 
potentials give 

*cotf=JIj8A(fr+^ 

- T T ^ X ^ W T ^ 

X[jS]ft(jMi802<M«W 

2TT2__ frft /3i%3(gi+fe)2-7r2(gi+fe)2(X2/31
3-XiJg23)-XiX27r4(/31-g2)

2 

and 

-fe/51%2(p1+^2)[(^i+ft)(XiP2
4-X2iS1

4)-XiX27r2(Pi-ft)2] 

^ i f t E ^ X i X ^ i ^ 

2(^x+/52) 
+ [7r2X1X2{(£1+&)(/3i^ 

where wx (*) = (/b2+/31
2)-1, and w2 (k) = (i^+ft2)-1. 

The scattering data used to get potentials a, h, and c in Table I are: #=23.69 F, re=2.5 F, and 5(310 MeV) 
= —8.92°. Potential d gives a phase shift of —22.4° at 310 MeV. The simple Yamaguchi is fit to the scattering 
length and effective range only. 


